1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
use crate::bounding_volume::{self, BoundingVolume};
use crate::math::Isometry;
use crate::pipeline::narrow_phase::{
    ContactAlgorithm, ContactDispatcher, ContactManifoldGenerator,
};
use crate::query::{
    visitors::BoundingVolumeInterferencesCollector, ContactManifold, ContactPrediction,
    ContactPreprocessor, ContactTrackingMode,
};
use crate::shape::{CompositeShape, Shape};
use crate::utils::DeterministicState;
use na::{self, RealField};
use std::collections::{hash_map::Entry, HashMap};

/// Collision detector between a concave shape and another shape.
pub struct CompositeShapeShapeManifoldGenerator<N: RealField> {
    sub_detectors: HashMap<usize, (ContactAlgorithm<N>, usize), DeterministicState>,
    interferences: Vec<usize>,
    flip: bool,
    timestamp: usize,
}

impl<N: RealField> CompositeShapeShapeManifoldGenerator<N> {
    /// Creates a new collision detector between a concave shape and another shape.
    pub fn new(flip: bool) -> CompositeShapeShapeManifoldGenerator<N> {
        CompositeShapeShapeManifoldGenerator {
            sub_detectors: HashMap::with_hasher(DeterministicState),
            interferences: Vec::new(),
            flip,
            timestamp: 0,
        }
    }

    fn do_update(
        &mut self,
        dispatcher: &dyn ContactDispatcher<N>,
        m1: &Isometry<N>,
        g1: &dyn CompositeShape<N>,
        proc1: Option<&dyn ContactPreprocessor<N>>,
        m2: &Isometry<N>,
        g2: &dyn Shape<N>,
        proc2: Option<&dyn ContactPreprocessor<N>>,
        prediction: &ContactPrediction<N>,
        manifold: &mut ContactManifold<N>,
        flip: bool,
    ) {
        self.timestamp += 1;

        // Find new collisions
        let ls_m2 = m1.inverse() * m2.clone();
        let ls_aabb2 = bounding_volume::aabb(g2, &ls_m2).loosened(prediction.linear());

        {
            let mut visitor =
                BoundingVolumeInterferencesCollector::new(&ls_aabb2, &mut self.interferences);
            g1.bvh().visit(&mut visitor);
        }

        for i in self.interferences.drain(..) {
            match self.sub_detectors.entry(i) {
                Entry::Occupied(mut entry) => entry.get_mut().1 = self.timestamp,
                Entry::Vacant(entry) => {
                    let mut new_detector = None;

                    g1.map_part_at(i, &Isometry::identity(), &mut |_, g1| {
                        if flip {
                            new_detector = dispatcher.get_contact_algorithm(g2, g1)
                        } else {
                            new_detector = dispatcher.get_contact_algorithm(g1, g2)
                        }
                    });

                    if let Some(new_detector) = new_detector {
                        let _ = entry.insert((new_detector, self.timestamp));
                    }
                }
            }
        }

        // Update all collisions
        let timestamp = self.timestamp;

        self.sub_detectors.retain(|key, detector| {
            if detector.1 != timestamp {
                // FIXME: ask the detector if it wants to be removed or not
                false
            } else {
                let mut keep = false;
                g1.map_part_and_preprocessor_at(*key, m1, prediction, &mut |m1, g1, part_proc1| {
                    keep = if flip {
                        detector.0.generate_contacts(
                            dispatcher,
                            m2,
                            g2,
                            proc2,
                            m1,
                            g1,
                            Some(&(proc1, part_proc1)),
                            prediction,
                            manifold,
                        )
                    } else {
                        detector.0.generate_contacts(
                            dispatcher,
                            m1,
                            g1,
                            Some(&(proc1, part_proc1)),
                            m2,
                            g2,
                            proc2,
                            prediction,
                            manifold,
                        )
                    }
                });

                keep
            }
        });
    }
}

impl<N: RealField> ContactManifoldGenerator<N> for CompositeShapeShapeManifoldGenerator<N> {
    fn generate_contacts(
        &mut self,
        d: &dyn ContactDispatcher<N>,
        ma: &Isometry<N>,
        a: &dyn Shape<N>,
        proc1: Option<&dyn ContactPreprocessor<N>>,
        mb: &Isometry<N>,
        b: &dyn Shape<N>,
        proc2: Option<&dyn ContactPreprocessor<N>>,
        prediction: &ContactPrediction<N>,
        manifold: &mut ContactManifold<N>,
    ) -> bool {
        if !self.flip {
            if let Some(cs) = a.as_composite_shape() {
                self.do_update(d, ma, cs, proc1, mb, b, proc2, prediction, manifold, false);
                return true;
            }
        } else {
            if let Some(cs) = b.as_composite_shape() {
                self.do_update(d, mb, cs, proc2, ma, a, proc1, prediction, manifold, true);
                return true;
            }
        }

        return false;
    }

    fn init_manifold(&self) -> ContactManifold<N> {
        let mut res = ContactManifold::new();
        res.set_tracking_mode(ContactTrackingMode::FeatureBased);
        res
    }
}