1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
use crate::math::{Isometry, Point};
use crate::pipeline::narrow_phase::{ContactDispatcher, ContactManifoldGenerator};
use crate::query::{
Contact, ContactKinematic, ContactManifold, ContactPrediction, ContactPreprocessor,
NeighborhoodGeometry,
};
use crate::shape::{ConvexPolygonalFeature, FeatureId, Plane, Shape};
use na::{self, RealField};
#[derive(Clone)]
pub struct PlaneConvexPolyhedronManifoldGenerator<N: RealField> {
flip: bool,
feature: ConvexPolygonalFeature<N>,
}
impl<N: RealField> PlaneConvexPolyhedronManifoldGenerator<N> {
#[inline]
pub fn new(flip: bool) -> PlaneConvexPolyhedronManifoldGenerator<N> {
PlaneConvexPolyhedronManifoldGenerator {
flip,
feature: ConvexPolygonalFeature::new(),
}
}
#[inline]
fn do_update_to(
m1: &Isometry<N>,
g1: &dyn Shape<N>,
proc1: Option<&dyn ContactPreprocessor<N>>,
m2: &Isometry<N>,
g2: &dyn Shape<N>,
proc2: Option<&dyn ContactPreprocessor<N>>,
prediction: &ContactPrediction<N>,
poly_feature: &mut ConvexPolygonalFeature<N>,
manifold: &mut ContactManifold<N>,
flip: bool,
) -> bool {
if let (Some(plane), Some(cp)) = (g1.as_shape::<Plane<N>>(), g2.as_convex_polyhedron()) {
let plane_normal = m1 * plane.normal();
let plane_center = Point::from(m1.translation.vector);
cp.support_face_toward(m2, &-plane_normal, poly_feature);
for (i, world2) in poly_feature.vertices.iter().enumerate() {
let dpt = *world2 - plane_center;
let dist = dpt.dot(plane_normal.as_ref());
if dist <= prediction.linear() {
let world1 = *world2 + (-*plane_normal * dist);
let local1 = m1.inverse_transform_point(&world1);
let local2 = m2.inverse_transform_point(&world2);
let f1 = FeatureId::Face(0);
let f2 = poly_feature.vertices_id[i];
let mut kinematic = ContactKinematic::new();
let contact;
let approx_plane = NeighborhoodGeometry::Plane(*plane.normal());
let approx2 = NeighborhoodGeometry::Point;
if !flip {
contact = Contact::new(world1, *world2, plane_normal, -dist);
kinematic.set_approx1(f1, local1, approx_plane);
kinematic.set_approx2(f2, local2, approx2);
let _ = manifold.push(contact, kinematic, local2, proc1, proc2);
} else {
contact = Contact::new(*world2, world1, -plane_normal, -dist);
kinematic.set_approx1(f2, local2, approx2);
kinematic.set_approx2(f1, local1, approx_plane);
let _ = manifold.push(contact, kinematic, local2, proc2, proc1);
}
}
}
true
} else {
false
}
}
}
impl<N: RealField> ContactManifoldGenerator<N> for PlaneConvexPolyhedronManifoldGenerator<N> {
fn generate_contacts(
&mut self,
_: &dyn ContactDispatcher<N>,
m1: &Isometry<N>,
g1: &dyn Shape<N>,
proc1: Option<&dyn ContactPreprocessor<N>>,
m2: &Isometry<N>,
g2: &dyn Shape<N>,
proc2: Option<&dyn ContactPreprocessor<N>>,
prediction: &ContactPrediction<N>,
manifold: &mut ContactManifold<N>,
) -> bool {
if !self.flip {
Self::do_update_to(
m1,
g1,
proc1,
m2,
g2,
proc2,
prediction,
&mut self.feature,
manifold,
false,
)
} else {
Self::do_update_to(
m2,
g2,
proc2,
m1,
g1,
proc1,
prediction,
&mut self.feature,
manifold,
true,
)
}
}
}